A Numerical Test of KPZ Scaling: Potts Models Coupled to Two-Dimensional Quantum Gravity
نویسنده
چکیده
We perform Monte Carlo simulations using the Wolff cluster algorithm of the q=2 (Ising), 3, 4 and q=10 Potts models on dynamical phi-cubed graphs of spherical topology with up to 5000 nodes. We find that the measured critical exponents are in reasonable agreement with those from the exact solution of the Ising model and with those calculated from KPZ scaling for q=3,4 where no exact solution is available. Using Binder’s cumulant we find that the q=10 Potts model displays a first order phase transition on a dynamical graph, as it does on a fixed lattice. We also examine the internal geometry of the graphs generated in the simulation, finding a linear relationship between ring length probabilities and the central charge of the Potts model. To appear in Modern Physics Letters A.
منابع مشابه
Quantum geometry of 2 d gravity coupled to unitary matter
We show that there exists a divergent correlation length in 2d quantum gravity for the matter fields close to the critical point provided one uses the invariant geodesic distance as the measure of distance. The corresponding reparameterization invariant two-point functions satisfy all scaling relations known from the ordinary theory of critical phenomena and the KPZ exponents are determined by ...
متن کاملGeometric and stochastic clusters of gravitating Potts models
We consider the fractal dimensions of critical clusters occurring in configurations of a q-state Potts model coupled to the planar random graphs of the dynamical triangulations approach to Euclidean quantum gravity in two dimensions. For regular lattices, it is well-established that at criticality the properties of Fortuin–Kasteleyn clusters are directly related to the conventional critical exp...
متن کاملThe XY Model Coupled to Two-Dimensional Quantum Gravity
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we di...
متن کاملGeometrical Interpretation of the KPZ Exponents
We provide evidence that the KPZ exponents in two-dimensional quantum gravity can be interpreted as scaling exponents of correlation functions which are functions of the invariant geodesic distance between the fields.
متن کاملCrossing the c=1 Barrier in 2d Lorentzian Quantum Gravity
In an extension of earlier work we investigate the behaviour of two-dimensional Lorentzian quantum gravity under coupling to a conformal field theory with c > 1. This is done by analyzing numerically a system of eight Ising models (corresponding to c = 4) coupled to dynamically triangulated Lorentzian geometries. It is known that a single Ising model couples weakly to Lorentzian quantum gravity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008